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ABSTRACT

Predicting when and where individual convective storms will develop remains an elusive challenge. Pre-

vious studies have suggested that surface observations can capture convective-scale features relevant to the

convective initiation (CI) process, and new surface observing platforms such as crowdsourcing could signif-

icantly increase surface observation density in the near future. Here, a series of observing system simulation

experiments (OSSEs) are performed to determine the required density of surface observations necessary to

constrain storm-scale forecasts of CI. Ensemble simulations of an environment where CI occurs are cycled

hourly using theCM1model while assimilating synthetic surface observations at varying densities. Skillful and

reliable storm-scale forecasts of CI are producedwhen surface observations of at least 4-km—and particularly

with 1-km—density are assimilated, but only for forecasts initiated within 1 h of CI. Time scales of forecast

improvement in surface variables suggest that hourly cycling is at the upper limit for CI forecast improvement.

In addition, the structure of the assimilation increments, ensemble calibration in these experiments, and

challenges of convective-scale assimilation are discussed.

1. Background

There is interest in improving storm-scale forecasts of

convective initiation (CI) to extend forecast lead times

for potential severe weather hazards. Lilly (1990) chal-

lenged the meteorological community to gain the ability

to explicitly forecast thunderstorms at city and county

scales. Since that time, numerous studies have investi-

gated CI in both modeling and observational contexts,

for example in a component of the International H2O

Project (IHOP; Weckwerth and Parsons 2006). This

work has successfully identified environments that sup-

port CI and meso- to synoptic-scale features that focus

convective development. The results of this research

now allow skillful forecasts of convective events with 0–

3-day lead time over regions of 100–1000km in scale

within time windows on the order of hours (e.g., Kain

et al. 2013; Duda and Gallus 2013). Nevertheless, storm-

scale prediction of individual convective elements re-

mains elusive.

Recently, the Warn-on-Forecast experiment at the

National Severe Storms Laboratory (WoF; Stensrud et al.

2009) attempts to produce real-time, storm-scale proba-

bilistic numerical forecasts of individual severe convective

storms and their associated hazards. However, WoF has

noted that their methods focus on predicting storm evo-

lution once initiation has occurred given the difficulty of

predicting storm-scale initiation. They specifically cite the

lack of dense observations of the preconvective environ-

ment as a significant limitation to their methods, a senti-

ment echoed by numerous studies of CI (e.g., Stensrud

and Fritsch 1994; Roebber et al. 2002; Mass et al. 2002;

Fowle and Roebber 2003; Dabberdt et al. 2005; Gallus

et al. 2005; Snook et al. 2015; Sobash and Stensrud 2015).

Though radar observations have been used successfully in

forecasting convective-scale features, their utility prior to

and during CI is limited unless sensitive cloud radars are

available (e.g., Markowski et al. 2006). Additionally, ef-

forts to assimilate or apply satellite-based observations to

CI have had mixed success. For example, Jones et al.

(2015) finds that assimilating satellite-based estimates of

liquid water path and ice water path can improve con-

vective forecasts when assimilated prior to initiation, but

the utility decreases in complex cloud fields and these

observations can produce unwanted artifacts. Mecikalski

et al. (2013) finds that the satellite characteristics of
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developing storms vary substantially from case to case.

However, Sieglaff et al. (2011) suggests that assimilating

satellite-based cloud-top cooling estimates may be useful

for CI forecasting.

Surface observations are one platform whose rele-

vance for CI forecasting remains underexplored. Sur-

face observation networks designed for synoptic-scale

forecasting are ill-suited for constraining short-term,

convective-scale forecasts (Sun et al. 2014). However,

recent studies suggest that new surface observing

platforms including crowdsourced observations could

dramatically increase surface observation density in the

coming years, and these observations have successfully

been applied to convective events (e.g.,Mass andMadaus

2014; Madaus et al. 2014; Muller et al. 2015; Jacques et al.

2015; Madaus and Hakim 2016, hereafter MH16). Fur-

thermore, Sobash and Stensrud (2015) show that assimi-

lating surface observations from local mesonets can also

aid in CI forecasting. Yet, those studies that have con-

nected an increased density of surface observations to

improved CI forecasts have mostly focused on the ability

of these observations to constrain broader mesoscale

features (e.g., fronts or drylines) that can serve as focal

points for CI. Investigating how dense surface observa-

tions may improve storm-scaleCI forecasts is timely both

for initiatives likeWoF and to justify the utility of rapidly

expanding surface observation sources.

Recently, MH16 investigated basic characteristics for a

surface observing network capable of capturing the CI

process. MH16 examined idealized simulations of CI in

environments capable of convective initiation due to

boundary layer processes alone; that is, without meso-

scale or synoptic-scale forcing. They describe coherent

patterns of anomalies that standard surface observations

measure in the time period prior to CI. These results al-

low speculation on requirements for a surface observing

network that could potentially capture the storm-scale CI

process. Specific hypotheses include the following:

1) Correlation length scales for surface variables are

approximately 4–5 km during the preconvective pe-

riod. This suggests a spatial observation density of no

more than 4–5km separating observations.

2) The earliest detectable surface anomalies were seen in

the 2-m temperature field as early as 60–80min prior

to CI. As such, to ensure that at least one assimilation

cycle occurs during the preconvective period when

anomalies may be detectable, a cycling frequency of

once per hour or greater is required.

This study evaluates these hypotheses in observing

system simulation experiments (OSSEs) using the

MH16 simulationmethodology. The primary goal of this

study is to ascertain the density of surface observations

that can provide skill to storm-scale forecasts of CI in an

hourly cycling, kilometer-scale ensemble. By simulating

CI in a regime where organized mesoscale forcing is ab-

sent, the ability of dense surface observations to capture

storm-scale structure may be clearly evaluated. The re-

mainder of this work is organized as follows. The meth-

odology behind these experiments, including the model

and data assimilation configuration, and forecast evalu-

ation metrics are described in section 2. In section 3, we

describe the environment simulated and the outcomes of

experiments. A summary and thoughts on future work

follow in section 4.

2. Methods

Here we describe the numerical model and data as-

similation methods used to perform OSSEs, specific

experiments performed, and the methods employed

for measuring performance in these experiments. A

description of the background environment used for

initial conditions is given in section 3a.

a. Numerical model

The simulations here largely follow the simulation

method used inMH16 with some exceptions. Here we use

Cloud Model 1, revision 18.3 (CM1; Bryan and Fritsch

2002), as this revision includes modifications to the model

output to enable data assimilation (http://www2.mmm.

ucar.edu/people/bryan/cm1/CHANGES). From a chosen

environmental sounding (section 3a), homogeneous initial

conditions are generated for a 128 km 3 128 km do-

main with 1-km horizontal grid spacing. Model vertical

grid spacing is 80m in the lowest 3.2 km and linearly

increases to 500m above 9 km with the model top at

18 km. Rayleigh damping of vertical motion is applied

above 15 km. Parameterizations used include the

Yonsei University (YSU) planetary boundary layer

(PBL) scheme (Hong et al. 2006), NASA Goddard

longwave and shortwave radiation (Chou and Suarez

1999, 2001), and Lin–Farley–Orville (LFO)/Goddard

microphysics scheme with six microphysical classes

(Lin et al. 1983; Tao and Simpson 1993). There is no

topography. Land surface properties are uniform and

defined by the U.S. Geological Survey (USGS) land-

use category that is most prevalent within a 100-km

radius of the sounding site. Boundary conditions are

doubly periodic and the only external forcing is diurnal

radiation. The simulation period focuses on the 10-h

period following the time of the sounding launch,

which, for the environment chosen, is long enough for

CI to occur in the simulations. As in MH16, we only

impose random, white-noise, gridpoint perturbations

with a maximum magnitude of 0.2K to the initial
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potential temperature field at all model levels to pro-

mote random spatial variability.

b. Data assimilation

For data assimilation, we use a version of the Data

Assimilation Research Testbed (DART; Anderson

et al. 2009) ensemble adjustment Kalman filter (EAKF;

Anderson 2001) that has been designed specifically to

interface with the CM1model. Only surface observations

are assimilated, and we use horizontal spatial covariance

localization (Gaspari andCohn 1999) with a half-width of

15km. While this is smaller than typically used for me-

soscale data assimilation, results fromMH16 indicate that

this is three times the typical decorrelation length scale

for surface variables in the pre-CI environment and is

sufficient to ensure that even at the coarsest observation

density examined (16km), all grid points may be adjusted

by at least one observation. Sampling error correction

for a finite ensemble size (Anderson 2012) and adaptive

covariance inflation (Anderson 2009) are used to main-

tain ensemble spread.

c. Generation of ensemble forecasts and observations

For theseOSSEs, herewe describe the generation of the

truth or ‘‘nature’’ simulation, the ensemble forecasts being

tested and the synthetic observations. Truth is given by a

unique, deterministic, 10-h simulation that represents a

single simulated evolution of CI in this environment.

DART utilities are used to draw synthetic observations

from the truth simulation. As the focus here is surface

observations, five observation types are drawn, all from

their corresponding fields within the CM1 model output:

d Surface pressure (PSFC; hPa)
d 2-m temperature (T2; K)
d 10-m U wind (U10; m s21)
d 10-m V wind (V10; m s21)
d 2-m specific humidity (Q2; g kg21)

Observations are drawn hourly from the 1-km grid

spacing truth simulation on a rectangular grid at three

horizontal spacings: 16, 4, and 1km. The observation lo-

cations are a subset of the model grid points for all den-

sities, so no spatial interpolation is required and the values

from the corresponding grid points in the truth simulation

are directly used as the observation values. To simulate

observation error, the observation values are randomly

perturbed in accordance with a normal distribution of

mean zero and variance equal to 1 unit2. Observation

errors of 1 unit2 are similar to the errormagnitudes used in

operational data assimilation systems for surface obser-

vations (e.g., Burton 2013; Hu et al. 2013).

A 50-member ensemble is generated as the test fore-

cast for the OSSEs. Initial ensemble diversity is provided

by random small (maximum 0.2K) temperature pertur-

bations at the initial time as described above. This en-

semble is integrated forward 1h to the first assimilation

time (hour 1). Each experiment begins with the same

prior ensemble at hour 1. In the control ensemble, in-

tegration of all 50 ensemble members continues to the

end of the 10-h period without assimilation. In all other

experiments the ensemble is cycled hourly, assimilating

observations as described in section 2d. After each

cycle, a 6-h ensemble forecast is generated, initialized

from the ensemble analysis at that time. These fore-

casts are compared with the corresponding truth sim-

ulation from which the observations were drawn and

their skill is quantified as described in section 2e.

d. Experiments

Here we test the hypothesis regarding the minimum

required observation density required to add skill to

forecasts of CI by conducting four experiments. The

control experiment does not assimilate any observations

and provides a baseline forecast for comparison with all

other experiments. We perform three additional experi-

ments assimilating observations at spatial densities of

16km (all_16km), 4km (all_4km) and 1km (all_1km). To

estimate the robustness of the findings, these experiments

are repeated 10 times using 10 different realizations of

truth. To generate each truth realization, a different

pattern of white noise is applied to the initial state as

described above.

e. Measuring forecast skill

A variety of metrics are considered for evaluating the

performance of the ensemble forecasts. To estimate how

rapidly forecasts diverge from the truth simulation fol-

lowing data assimilation, the root-mean-squared differ-

ence (RMSD) between fields is computed as follows:

RMSD5

�
1

n
�
n

i51

( f
i
2 o

i
)2
�1/2

, (1)

where n is the total number of grid points, fi is the

forecast value at each grid point, and oi is the value from

the truth simulation at the corresponding grid point.

For computing probabilistic forecast skill from the en-

sembles, the Brier score (BS) is employed (Brier 1950),

which is similar to RMSD but for probabilistic forecasts:

BS5
1

n
�
n

i51

(P
i
2 o

i
)2 , (2)

where n is the total number of locations where forecasts

are produced,Pi is the forecast probability of occurrence

of a specific event at each location, and oi is a value of 1

JULY 2017 MADAUS AND HAK IM 2599

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 03:52 PM UTC



or 0 if the event actually occurred at that location or not,

respectively. In our analysis, Pi is determined by the

fraction of ensemble members that forecast the event to

occur. We specifically use the Brier score in the context

of the Brier skill score (BSS) to compare the skill of one

forecast against another:

BSS5 12
BS

fcst

BS
ref

, (3)

where BSfcst is the Brier score from the test forecast and

BSref is the Brier score from some reference forecast. A

negative BSS indicates the test forecast has less skill

than the reference forecast (here, forecasts from the

control experiment), while a positive BSS indicates

greater skill than the reference. A perfect forecast would

have a BSS of 1.

When computing BSS values in our forecasts, we

chiefly use them to evaluate probabilities of exceedance

of reflectivity thresholds. To reduce errors associated

with the exact timing of CI, we use a 610-min neigh-

borhood window when computing ensemble probability

forecasts. Specifically, the probability of exceedance at a

given time and grid point is computed by finding the

fraction of ensemble members that exceed the threshold

at that grid point within 10min of the given time.

3. Results

a. Convective evolution in truth and the control
experiment

For initial conditions, we use an environment based

on the observed radiosonde profile at 1200 UTC 27 July

2014 in Lincoln, Illinois (KILX) (Fig. 1), which was one

of many considered in MH16. This particular environ-

ment is chosen due to the relatively isolated nature of

the convection that develops (described below, Fig. 2),

which facilitates a clearer analysis of storm-scale CI

prediction. In this environment, a nearly isothermal layer

is present from the surface to around 900hPa, with the

lapse rate steepening above this level. The environment is

nearly saturated from the surface up to 750hPa, except

for a drier layer between 925 and 875hPa. Above 750hPa,

the profile is dry, and the tropopause level is reached at

about 150hPa.

From the onset of simulations (1200UTC or 0700 local

time), diurnal radiation heats the surface, and the

boundary layer deepens as convective mixing becomes

more vigorous. Surface-based parcels begin reaching

their LCLs around 4–5h and cumuliform clouds develop

(not shown). Figure 2 shows the simulated composite

reflectivity (CREF) evolution of one truth simulation as

an example of the convective development that occurs

similarly in all simulations. Here, CREF is computed

using a diagnostic algorithm described in Stoelinga

(2005). This algorithm first estimates the S-band (10 cm)

reflectivity factor given the air density and rain, snow,

and graupel mixing ratios at each grid point. To form the

composite field, each vertical column is considered and

the maximum reflectivity factor in each column is re-

tained. This field is used as a proxy to identify individual

convective features.

Initial deep cumulus formation is widely scattered.

Several clouds reach their levels of free convection (LFCs)

and there is a continuous transition to deep, precipitating

convection between hours 6 and 7 (Fig. 2). The first pre-

cipitation accumulation of greater than 0.1mm at the

surface occurs at 6.8h in this specific simulation. The

storms continue to grow and mature through 8.5h, while

remaining discrete and relatively few in number. As the

initial storms begin to decay, convergence on the edges of

remnant cold pools sparks a newwave of initiation at 9.2h

into the simulation and these storms persist through the

simulation end at hour 10.

The control ensemble simulation does not assimilate

observations and, as such, is agnostic to matching truth.

Convection develops along a similar timeline to the single

realization shown above, but in random spatial locations

in different ensemblemembers (not shown). This random

spatial development is uniformly spread across the do-

main, and because of this, the domain-mean probability

FIG. 1. The Lincoln, Illinois (KILX), 1200 UTC 27 Jul 2014

sounding used to generate initial conditions for the OSSE

simulations.
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of exceeding a particular CREF threshold over time is

similar to the fractional coverage of the domain by points

exceeding that CREF threshold (Fig. 2). Thus, the control

ensemble serves as a reasonable ‘‘random’’ background

forecast against which improvements may be measured.

b. Varying observation density

Three experiments are performed that assimilate all

surface observation types at hourly frequency, but with

different observation grid spacings: 16 km (all_16km),

4 km (all_4km), and 1km (all_1km). These experiments

are repeated with 10 different truth simulations, or re-

alizations. Here we compare the forecasts from these

experiments.

1) FORECAST SKILL IN A SPECIFIC REALIZATION

Figure 3 shows the probabilistic skill (BSS) in en-

semble forecasts of CREF$ 10 dBZ during the period

surrounding CI for a single truth realization. The

threshold of 10dBZ is chosen because, in these experi-

ments, it can indicate the presence of deep clouds even

prior to those clouds producing precipitation that reaches

the surface. The time of the first appearance of 10dBZ in

the truth simulation is at 5.5 h from the beginning of the

simulation, and the time when accumulated precipitation

at any point in truth first exceeds 0.1mm is shown by the

vertical black line (0630). In our analysis we will refer to

two periods: the CI period (between the appearance of

10dBZ and the onset of precipitation, or CI time) and the

mature convection period (after the onset of precipitation

in truth). As seen in Fig. 2, for the first part of the CI

period the areas where CREF $ 10dBZ are limited to

small, transient features. Robust convective clouds with

lifespans that persist longer than a few minutes do not

begin to occur until about 30min prior to the onset of

precipitation, which is consistent with the typical life cycle

of airmass-type convection (e.g., Houze 2014). While the

results in Fig. 3 are for a single realization, the patterns

FIG. 2. Evolution of simulated composite reflectivity (CREF) in a single realization of the

KILX environment. (top) The fraction of the total domain area where CREF exceeds various

threshold values as a function of time is shown. The vertical green line indicates the timewhen

the total accumulated surface precipitation first exceeds 0.1mm at any point in the domain

(CI time). (bottom three panels) Snapshots of the CREF field at the times indicated by the

vertical dashed lines in the top panel. Gray lines show a 16-km grid, for scale.

JULY 2017 MADAUS AND HAK IM 2601

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 03:52 PM UTC



shown here are qualitatively similar in all the realizations,

as will be summarized later.

We discuss forecast skill for this realization in detail to

describe several features of the forecasts. For forecasts

valid during the CI period (left of black line, Fig. 3), the

16-km observation grid (all_16km) provides no clear

benefit to the forecast, as skill score magnitudes remain

close to zero throughout this period for all forecasts. The

4-km observation grid skill (all_4km) is low inmagnitude;

however, in the forecasts initiated at hour 6 there is a

period of slightly positive skill through the time of CI. This

suggests that 4-kmdensity observationswhile the cumulus

field is deepening may provide some skill to forecasts of

initiation. The 1-km observation grid (all_1km) likewise

shows small skill magnitudes during this period for fore-

casts initiated at hours 2–4. However, for forecasts initi-

ated at hours 5–6, there is positive skill throughout the CI

period, with skill increasing toward the time of CI. As

such, the 1-km observation grid appears to be able to

extend the positive skill of the 4-km grid by at least 1 h

in this realization, and provides positive skill at pre-

dicting CI locations when observations are assimilated

while the cumulus field is deepening.

In the mature convective period after CI has occurred

(right of the vertical line, Fig. 3), all_16km still provides no

clear improvement over the control forecast. However,

all_4km forecasts initiated at or after hour 6 have positive

skill, particularly within the first hour of each forecast. In

general, much higher skill scores are seen throughout this

period in the all_1km experiment. However, there are

notable skill ‘‘dropouts’’ at around 8 and 9h for forecasts

initiated after CI has occurred. These correspond to times

when the overall coverage of storms is at a relative min-

imum (Fig. 2). Additionally, the skill in these forecasts

FIG. 3. Brier skill scores (BSSs) from a single realization of the KILX environment showing

the skill in probabilistic forecasts of CREF $ 10 dBZ verified against the truth simulation.

(from top to bottom) Forecasts from the experiments with observation grid spacings of 16, 4,

and 1 km, respectively. In these panels, each row represents a forecast initiated at a different

time and each column is a verification time. Skill scores are measured relative to the control

ensemble forecast that assimilates no observations. The vertical black line indicates the time

when precipitation first occurs in the truth (CI time; 6 h, 30min).
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becomes positive as the forecast progresses. This ap-

pears to be related to the spinup time to develop con-

vection in response to the assimilation increments (not

shown). We comment further on this and other chal-

lenges of convective-scale assimilation below.

To better visualize what these skill scores mean in

terms of an actual convective forecast, Fig. 4 compares

forecasts initiated at a single time in the CI period—hour

6, 30min prior to precipitation onset—for each of the grid

spacing experiments. The probability ‘‘swaths’’ in Fig. 4

show where the ensemble forecasts place the likely lo-

cations of the stormcores (here, CREF$ 10dBZ) as they

develop and evolve throughout the first 2h of this fore-

cast. These may be compared with the true swaths out-

lined in black. The all_16km ensemble members do not

have strong consensus on the locations of storms and

there is no clear correspondence between its forecast and

the truth. The all_4km ensemble has slightly elevated

probabilities (.10%) that loosely correspond with some

storms in the truth run, namely in the central part of the

domain. However, the forecast poorly captures some

storms and completely misses others, which decreases

confidence in its indication of storm development. The

all_1km ensemble captures the majority of the storm

swaths well. There is good agreement on the existence

and location of nearly all of the major storm elements in

the truth run, with high confidence in the locations of

several storm cores. There is some discrepancy over the

exact path and evolution of individual storms, but this

forecast highlights the likely storm development and

evolution well.

2) FORECAST SKILL ACROSS ALL REALIZATIONS

To examine these skill improvements further, we

consider the variability in forecast skill with forecast

lead time in different realizations of all_16km, all_4km,

and all_1km. Considering skill across 10 different re-

alizations helps develop a composite picture of how skill

varies with observation density and tests the sensitivity

of these results to a particular truth simulation.

For each realization of each experiment, we consider

the forecasts initiated each hour as the ensemble cycles.

For each forecast, we compute both the lead time of the

forecast (the difference between the CI time in truth and

the forecast initialization time) and the mean BSS for

ensemble probability forecasts of CREF$ 10dBZwithin

30min of the time of CI. Since the onset of precipitation

(the time of CI) varies by as much as 40min in different

truth realizations, a broad spectrumof forecast lead times

are represented in these different realizations. Figure 5

shows the average forecast skill around CI time as a

function of forecast lead time for all forecasts from all

realizations of all experiments. We overlay a 1-h moving

average of the skill scores from all realizations of each

experiment.

For forecasts with lead times greater than 60min, all

experiments have skill scores close to zero. Within 1 h of

CI, forecasts in the all_16km experiments continue to

show near-zero skill. In the all_4km forecasts, there is a

weak trend of increasing skill in this period as the time of

CI approaches, but several forecasts still have no skill

around CI time. On average, the all_1km forecasts ini-

tiated within 1 h of CI time have higher skill than the

all_4km or all_16km forecasts. However, this skill im-

provement is not robust as forecast lead time decreases.

Some all_1km forecasts still have similar skill to all_4km

or all_16km forecasts even with lead times of less than

1h. Nevertheless, there is increased potential for skillful

forecasts when a 1-km observation grid is assimilated

within 1 h of CI. This 1-h window when increased CI

FIG. 4. The ensemble probabilities of exceeding 10 dBZ during the first 2 h of the forecast initiated at hour 6. Shown aremaps of the entire

simulation domain for a single realization of the (left) all_16km, (middle) all_4km, and (right) all_1km experiments. The black contours

outline where the 10-dBZ threshold was exceeded in the truth simulation. The dashed black grid shows a 16 km 3 16 km scale.
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forecast skill is possible agreeswell with previous estimates

of the storm-scale predictability of CI (e.g., Droegemeier

1990; Weckwerth 2000; Zhang et al. 2003).

We consider now the reliability for probabilistic fore-

casts of locations of convective storms. Figure 6 compares

the ensemble probability of CREF $ 20dBZ to the ob-

served frequency of occurrence for the first 2h of all

forecasts initiated at hour 6, which spans the CI time in all

realizations. We use the 20-dBZ threshold here to high-

light more developed storm cores in Fig. 6. The all_16km

and all_4km ensembles produce only low probabilities in

all realizations, and these generally overpredicted the rate

of occurrence. This qualitatively agrees with the results in

Fig. 4. Going from low (16 and 4km) to high (1km)

density observations, the maximum probabilities pro-

duced by the ensemble increase, which illustrates smaller

spread and greater agreement among the ensemble

members on potential storm locations when higher den-

sity observations are assimilated. The all_1km forecasts

show good, but overconfident reliability, particularly for

probabilities greater than 25%. The overconfidence in all

experiments suggests poor ensemble spread calibration,

which will be discussed further in section 3e.

c. Assimilation increments

MH16 describe evolving patterns in surface fields prior

to and during CI and suggest that increments of surface

fields matching these patterns may be able to constrain

convective development. To explore this, we examine a

vertical cross section through the region with the largest

2-m temperature increment during the hour 6 assimilation

(within the CI period) of a single realization of all_1km.

Figure 7 shows this cross section of prior and posterior

ensemblemean cloudwater; increments in cloudwater, T2,

Q2 and U10; and the cloud water from truth at that time.

In the center of this cross section (at x 5 30km), the

prior ensemblemean has a cloud extending from 1 to 5km

in the vertical and approximately 8km wide (Fig. 7, top

panel, shading). In this same area, assimilated surface ob-

servations produce a negative T2 increment and opposing

wind increments (positive to the left, negative to the right)

that would promote increased convergence (or reduction

in divergence) (Fig. 7, middle panel). These temperature

andwind adjustments agreewellwith cloud shadowing and

low-level convergence anomalies associated with a de-

veloping convective cloud at this location, discussed in

MH16. In response to the assimilated surface observations,

there is positive increment in cloud water in this cloud

object (Fig. 7, top panel, contours), which increases cloud

water in the posterior ensemble mean (bottom panel,

shading). As anticipated, the true state does indeed have a

cloudobject at this location (bottompanel, black contours)

marking a reasonable translation of surface increments to

cloud field adjustments. Another combination of negative

T2 increment, convergent wind increment, and correctly

augmenting a cloud object may be found in the cloud at

x 5 5km in the cross section.

Likewise, the converse of these surface increments

leading to the removal of cloud objects from the ensemble

mean may also be seen in Fig. 7. This is most notable for

FIG. 5. Mean Brier skill score within 30min of the time of CI as a function of forecast lead

time for each forecast from each realization of each experiment. BSSs are shown from

forecasts in all realizations of the all_16km (blue), all_4km (red) and all_1km (gold) exper-

iments. The solid lines represent a 1-h moving average for each experiment.
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the cloud object in the prior ensemble mean between 45

and 52km in the cross section. Here, positive temperature

anddivergentwind increments underlie a cloud in the prior

ensemble mean. The resulting increment in cloud water is

negative, and in the posterior mean (bottom panel) this

cloud is largely (and correctly) removed from the analysis.

While these adjustments agree with expectations from

MH16, there are locations where the surface increment

pattern does not correspond exactly as anticipated with

the presence (or absence) of a cloud object. For instance,

despite a cloud object present in truth between x5 9 and

14km in Fig. 7, there is no clear signal in the temperature

increments in that region, while the wind increments show

weak divergence. Complicating the response to this cloud

is the lack of a cloud object at this location in the back-

ground ensemble mean (Fig. 7, top panel). This highlights

an additional challenge to storm-scale data assimilation: if

no ensemble members have nonzero cloud water at a

given location, the assimilation cannot produce a cloud.

This can limit assimilation effectivenesswhen using a finite

ensemble to estimate background covariances.

d. Lifetime of assimilation adjustments

Considering ensemble cycling frequency, MH16 hy-

pothesize that at least hourly cycling is required to capture

the CI process. Because of computational limitations, we

have only tested assimilation for hourly cycling. We

assess the sensitivity to hourly cycling by examining the

duration of improvements to the forecast following

assimilation and how this changes with observation

density. Figure 8 shows the RMSD of various surface

fields between the ensemblemember forecasts initiated

at hour 6 (within the CI period) and the truth simula-

tion for a single realization of the all_16km, all_4km,

and all_1km experiments. Only a single realization is

shown here to highlight specific features of these dif-

ferences, but the patterns and time scales in Fig. 8 are

similar across all realizations (not shown). To evaluate

the significance of the differences between experiments,

we employ a simple t test of the difference in ensemble

mean RMSD using the standard deviation of ensemble

member RMSDs. Differences with greater than 95%

confidence are considered significant.

In the all_16km and all_4km experiments, the en-

semble mean RMSD for T2 (Fig. 8, upper left), Q2

(lower left), and U10 (lower right) is slightly lower in

the 4-km experiment. The all_16km 2 all_4km differ-

ence is only significant for the first 30min for U10 and

Q2 and is not significant for T2. The all_1km experi-

ment shows large reductions in RMSD during the ini-

tial period of the forecast. Reduction in RMSD from

the all_4km to all_1km ensembles remains significant

for 40min in T2 (upper left) and 80min in U10 (lower

right) and Q2 (lower left). The additional information

provided by the 1-km density observations contributes

positively to surface forecasts for 40–80min after as-

similation. This suggests that hourly cycling is likely at

the upper limit of useful cycling frequencies for storm-

scale updates.

The RMSD values for the surface pressure field

(PSFC) show a different pattern than the other vari-

ables. Instead of higher observation density reducing

the error in PSFC for the early part of the forecast,

an initial spike in PSFC RMSD grows more pro-

nounced as observation density increases. Coherent

oscillations among ensemble members in PSFCRMSD

suggest gravity wave noise as the source of these errors

(Anderson et al. 2005). After assimilation there is a

rapid adjustment to balance any nonphysical features

introduced by assimilation. These errors are dispersed

as gravity waves. Over time, the Rayleigh damping

used in these simulations reduces this signal. Though

gravity wave noise would also affect the surface wind

and temperature fields, PSFC is both highly constrained

in this environment (as there is no synoptic or broad

mesoscale variability) and is sensitive to perturbations

throughout the vertical column. The relatively small

pressure perturbations induced by deepening cumulus

FIG. 6. Reliability diagram comparing the ensemble probability of

CREF $ 20 dBZ to the observed frequency for the first 2 h of fore-

casts initiated at hour 6. The mean of all 10 realizations of hour 6

forecasts is shown for the all_1km (gold), all_4km (red), and all_16km

(blue) experiments. Vertical bars indicate one standard deviation of

the reliability across all realizations. The horizontal dotted line shows

the climatological rate of occurrence (0.06) during this time, while the

sloped dotted line indicates the ideal, 1-to-1 line.
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clouds [O(1–10) Pa; MH16] are of similar or smaller

magnitude than the PSFC differences seen in Fig. 8

and the gravity waves dominate the signal. In contrast,

T2 and U10 observations are mostly insensitive to

perturbations above the boundary layer, and the

magnitude of signals induced by deepening clouds

[T2: O(1) K, U10: O(1–2)m s21; MH16] is likely larger

than the errors induced by the gravity wave noise. As

such, this noise is mostly manifested in the PSFC field.

The PSFC gravity wave noise increases with in-

creasing observation density and is coherent among

ensemble members. This indicates that as observation

density increases, the ensemble fit is increasingly con-

strained to the (perturbed) observations and deviates

more from the balanced background state, amplifying

the gravity wave response. Dispersion of these imbal-

ances may interfere with the spinup of convective-scale

features following the assimilation. In general, this re-

sult highlights a shortcoming of using surface pressure

observations to inform storm-scale features in a nu-

merical model—initial condition imbalances can gen-

erate gravity wave noise with pressure signals that

overwhelm any meteorological pressure signal on the

convective scale.

These oscillations in the PSFC RMSD agree with

Anderson et al. (2005), who also observe high-frequency

gravity wave oscillations when dense surface pressure

observations are assimilated on an hourly basis in a gen-

eral circulation model. They note that these oscillations

are in phase in all ensemble members, similar to what is

seen here, and these can adversely affect assimilation

performance. However, Anderson et al. (2005) observes

that assimilating more frequently (not allowing errors

to grow significantly in the ensemble) can reduce gravity

wave oscillations. This suggests that, despite skillful

CI forecasts with hourly cycling in these experiments,

further improvement may be possible with more fre-

quent cycling.

e. Ensemble calibration

While the primary forecast objective—constraining

ensemble forecasts of storm features—appears possible

at high surface observation densities, here we examine

another performance measure: ensemble calibration.

One calibrationmeasure is the inflation factors generated

by the time-varying adaptive inflation (Anderson 2009)

employed in these experiments. The inflation factor es-

timates the degree to which the ensemble prior variance

must be increased such that the error between the ob-

servations and the ensemblemean prior estimate of these

observations remains consistent with the sum of ensem-

ble and observation error variance. Figure 9 shows the

FIG. 7. Cross section of (top) prior (shading) and increment (contours) and (bottom)

posterior (shading) and truth (black contours) ensemble mean cloud1 ice water mixing ratio

values for the assimilation at hour 6 with 1-km observation density. (middle) Increments of

U10, Q2, and T2 along the same cross section are shown.
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domain-averaged inflation factor applied to the T2 and

PSFC fields as a function of assimilation time for a single

realization of the three observation density experiments.

In Fig. 9, for both variables, the inflation factors in-

crease as observation densities increase. This indicates

that though increased observation density reduces en-

semble spread about a particular forecast solution (e.g.,

Figs. 4 and 8), the error growth in the ensemble about

this solution is suboptimal, requiring larger inflation

factors to avoid filter divergence. The differences be-

tween the necessary inflation factors for each obser-

vation density become noticeable by the assimilation

at hour 3, but increase approximately exponentially as

convective clouds develop and mature. More careful

consideration of methods to control ensemble variance

(e.g., localization radius, inflation methods) is likely re-

quired to maintain good ensemble calibration as convec-

tion develops.

4. Summary

These experiments tested the ability of dense surface

observations to provide skill to ensemble forecasts of

CI in a challenging scenario where organized meso- or

synoptic-scale forcing was absent. The OSSEs made

a perfect-model assumption and assumed unbiased

observations with perfect knowledge of observation

error. Under these conditions, experiments testing the

impact of observation density supported the hypothesis

that observation spacing of 4 km or less is required to

FIG. 8. RMSD between ensemble members and the truth simulation for selected surface variables of the forecast

following the hour 6 assimilation for a single realization of truth. The all_16km, all_4km, and all_1kmexperiments are

shown. Individual ensemble members are shown in the dotted lines, while the ensemble means are solid lines.
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constrain CI forecasts with hourly cycling. Forecasts of

CI showed no improvement over control forecasts with

16-km observation grids, marginal improvements with

a 4-km grid, and larger improvement with a 1-km grid.

However, on a case-by-case basis the relative im-

provement between 4- and 1-km density was variable,

even within an hour of CI. At 1 km observation density

CI forecast skill was only improved in forecasts initi-

ated within one hour of CI time; assimilating obser-

vations at earlier times had no noticeable impact on

convective-scale forecasts of subsequent CI. In the

1-km experiments, ensemble forecasts of convective

features during the CI period had good reliability,

though were slightly overconfident.

Assimilation increments during the hour prior to CI

(when improved skill was possible) were examined to

investigate how the surface observations were adjusting

the ensemble state. Changes to the cloud field were as-

sociatedwith patterns of surface increments that generally

corresponded to those expected fromMH16. Specifically,

areaswith negative 2-m temperature and convergent 10-m

wind increments also had positive cloud water increments

in the atmosphere above. The lack of CI forecast skill in

forecasts initiated before the cloud field developed further

suggests that surface observations are most useful once

cumulus formation has begun.

Forecasts of surface fields in the 1-km observation

density forecasts had lower errors than in the 4- or

16-km observation density forecasts. The lower errors

with the 1-km observation grid persisted for 40min (for

temperature) to over an hour (for wind and moisture),

suggesting that hourly cycling is at the margin for

enabling improvements to CI forecasts when used

with a very high density observing network. Gravity

wave noise was observed following assimilations during

the CI period, whichmay have reduced the assimilation

effectiveness.

Anderson et al. (2005) suggest more frequent as-

similation could reduce this noise, but cautions that

frequent assimilation (on the orders of tens of minutes

or less) can also introduce instabilities in themodel that

prevent successful simulations. There have been recent

examples of surface observing networks being suc-

cessfully used for 5-min update cycles (e.g., Sobash and

Stensrud 2015) (albeit at much lower observation

densities than tested here). We attempted to test 5-min

update cycles with our experiment setup, however, the

ensemble members became numerically unstable fol-

lowing assimilation once the cumulus field had begun to

develop and the experiments were unable to be com-

pleted. We are currently investigating what adjustments

may need to be made to the CM1 configuration or the

data assimilation methods to enable more frequent as-

similation at these densities. Because higher frequency

observationsmay compensate for reduced spatial density,

additional experiments assimilating dense surface ob-

servations at high temporal frequency are planned.

While these experiments showed skill in constraining

CI forecasts, we found that the ensemble calibration

became increasingly suboptimal as convection devel-

oped in these experiments. This occurred despite the

use of techniques designed to mitigate this (e.g., co-

variance localization, adaptive inflation, and sampling

error correction). Large inflation factors were required

FIG. 9. Domain-mean inflation factors from the 16-km (blue), 4-km (red), and 1-km (gold) experiments as

a function of assimilation time for (left) 2-m temperature (T2) and (right) surface pressure (PSFC).
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for hourly assimilation of 1-km density observation ob-

servations (factors of greater than 5 as the convection

matures). Additional experiments (not shown) suggested

that a better-calibrated localization radius may improve

ensemble calibration. However, to further improve en-

semble calibration, techniques like localization and in-

flation need to be more thoroughly evaluated for rapidly

evolving convective scenarios.

It should be emphasized that factors such as model

error and observation bias are not considered in these

experiments. In operational practice, these effects can

detract from forecast performance and, as such, even

the high densities of observations required here may

be optimistic. However, while there are many envi-

ronments and scenarios where CI may occur in the

absence of organized larger-scale forcing as simulated

here (such as warm-season diurnal convection in the

southeastern United States), CI often occurs in the

relation to mesoscale features such as fronts, drylines,

and cold pools (e.g., Owen 1966; Ziegler et al. 1997),

which dense surface observations are able to constrain

(e.g., Wheatley and Stensrud 2010; Madaus et al. 2014;

Sobash and Stensrud 2015). Surface observing net-

works of the densities considered here would likely

improve the representation of these features and, in

turn, increase CI forecast skill. Given the findings here,

scenarios with organized mesoscale forcing represent

the most likely situations for dense surface observa-

tions to contribute to CI forecast skill.
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